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Fuel code

Irradiation plan

Fuel element design
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Lower margin for fuel design ���� performances increase
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DEFINITIONS FOR EVALUATION
Fuel design phases, Irradiations types, Fuel code levels
�Choice of examples

PART 1 : FUEL DESIGN AND QUALIFICATION WITH IRRADIA TION 
PLAN

PART 2 :  FUEL CODE AND VALIDATION WITH IRRADIATION

PART 3 :  ILLUSTRATIONS OF IRRADIATION-FUEL DESIGN-
MODELLING WITH GENIV FUEL EXAMPLES

CONCLUSION
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Definition of fuel design

• 4 phases:
– Selection

• Prospective approach to demonstrate feasability, to assess materials & 
design options

– Development
• Identify limitations and all items of interest for R&D

– Optimisation
• Improvement of safety and performances with : fabrication process, 

materials optimisation, design , ….
• Normal and off-normal conditions

– Qualification
• Full size demonstration under prototypic conditions : 

neutronic + thermomechanic + thermohydraulic + thermodynamics
• Licensing of fuel/core by regulator by identification of fuel limits

� A quantitative and more detailed evaluation : Technical Readiness Level scale*
* Global’09, K. A. McCarthy and K. O. Pasamehmetoglu, Paper 9477
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Definition of Irradiation types in reactor

• NORMAL CONDITIONS
– Analytical

• Objective � 1 phenomenon (creep, swelling, gas diffusion…..)
• Irradiation design:

– Geometry: conventional pellet or dedicated geometries (disk,  samples, …), 
– Conditions: most are fixed to test 1 parameter
– Monitoring and in-situ measurements

• Reactor :
� In MTR

+ in-pile measurements (pressure, FG release, fuel temperature,  fuel stack
elongation, fuel pin outer diameter change) with possibility to fix some conditions 

- thermal spectrum (or screen), different limit conditions except in dedicated loop,
- miniature fuel rodlet, limited irradiation time

� In prototype 
+ representative conditions including fast neutron dose and high BU 
- no instrumentation, « Cook and look »

– Integral or semi-integral
• Objective � phenomena coupling (Fission gas release, temperature, clad strain, …)
• Irradiation design : 

– Pin or shorted pin with representative radial geometry
• Reactor : same
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Definition of Irradiation types in reactor

• OFF-NORMAL CONDITIONS
– Analytical

• MTR: overpower test on re-fabricated irradiated pin (slow 
transient)

• Furnace heating test in hot lab: 1 pellet with/wo clad
– annealing treatment or temp. ramp or even a local heating to 

have a temperature gradient on irradiated fuels above 2500°C 
with different atmospheres (MERARG II – DURANCE devices
in LECA hot cells facility at CEA-Cadarache) 

– on-line measurement of gas release : FG and volatile FP 
release.

– Integral or semi-integral � phenomena coupling
• Hot cells : severe accident conditions on irradiated rodlet

(VERDON in LECA)
• Safety reactor for fast transient test on a full size pin (CABRI, 

TREAT, …) or  severe accident on pin bundle (PHEBUS).
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Definition of code grade levels

• LEVEL 1 ; Pre-design code
– Empirical models, simple ones and limited coupling
– Check behaviour for pre-designing fuel

• LEVEL 2 ; R & D code
– Dedicated models and material laws with models coupling
– For fuel design & experimental irradiation design & post irradiation calculation

• LEVEL 3 ; Fuel performance code
– 1.5 D (axi-symmetry), 2 D or 3D thermo-mechanical analysis, 
– Modelling increasingly mechanistic and multi-scale approach
– Validation with large experimental database

• LEVEL 4 ; Predictive code        « THE HOLY GRAIL !! »
That can be used outside of its validation area with a hi gh confidence on results :

• Reliabiliaty (physics based models and model coupling)
• Availability (application on a large area with spread irradiation database and material database)
• Accuracy ( high level for all situations)

– Multiscale modelling (bubbles, grain, pellet, fuel element level) for whole fuel element
evaluation as well as local effects ( 1.5D-2D-3D) and non symetric effects
…. with microstructure and irradiation effects.

– Coupling between thermochemistry, thermodynamic, transport theory, neutronic and 
thermal/mechanical conventional analysis
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CHOICE OF EXAMPLES

– GFR, plate and pin fuel with mixed carbide and refrac tory cladding (composite)
• Selection phase for fuel design
• Fuel code development before irradiation programme
• Irradiations for feasability studies on fabrication and behaviour

– HTR, particle fuel
• Optimisation-qualification phase,
• Fuel code development before the  irradiation programme
• Irradiations able to evaluate and improve both behaviour (models) and fuel fabrication : 

analytical and integral irradiations

– SFR, driver MOX fuel 
• Qualification phase
• Fuel code existing, models improvement on-going
• Irradiations to extend experimental database

– SFR, transmutation homogeneous MOX fuels (U0.78, Pu0.2, Am 0.013,Np0.007, Cm0.006)O2-x

• Development phase
• Fuel code existing, adaptation of some models
• Irradiations to build dedicated database

– SFR, MABB minor actinide bearing blanket (U0.8, Am0.153, Np0.034, Cm0.013)O2-x or (U0.8, Am 0.2)O2-x

• Selection-Development phase
• Fuel code existing, need of dedicated models + adaptation of existing models
• Irradiations to demonstrate limits and for model validation

Others possible applications :  dispersion fuels for  transmutation, metal fuel, ….
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• PART I : FUEL DESIGN AND QUALIFICATION WITH IRRADIA TION 
PLAN
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SELECTION PHASE

• Objective:

– Based on a first fuel design with several options 
(design/material)

�Evaluate performances towards requirements

• Irradiation

– Screening irradiations in order to remove options due to 
critical points 
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SELECTION PHASE : example

• Analytical

– GFR
Cladding: 
• FUTURIX-MI (select the best cladding for high

temp.-1000°C and fast fluence-40 dpa), PHENIX, 
self-heating device with sample holder, different
specimens, temperature evaluation by monitors.

• CEDRIC (SiC creep)
OSIRIS, SiC fiber under constant stress (200MPa) 
and LVDT for on-line elongation measurement.

Concept :
• FUTURIX-Concept (select the best concept for 

GFR conditions, thermomechanical & 
thermochemical)
PHENIX, pin-std rig with several fuel types (coated
particles, honeycomb structure, nitride, carbide
fuels,…).
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DEVELOPMENT PHASE

• Objective:

�Reference design
�Specifications fulfill-Performances-limits-critical points

• Irradiation

– Prototypic fuel (lab. scale fabrication)
– Intermediate conditions (Burn Up and dose ↗ with a step

by step approach)
– Identification of normal conditions life limiting phenomena
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DEVELOPMENT PHASE : example

• Analytical
– Homogeneous transmutation of Am 

– AM1 in JOYO reactor for BOL phenomena
– GFR

• UPuC: 
– GOCAR (effect of temperature on MC swelling)

SILOE reactor, special design with gap adjustment for temp. 
control, thermocouple

• Integral
– Homogeneous transmutation of Am and Np

• SUPERFACT (behaviour at intermediate burn-up)
PHENIX, mean LHR, 7at%

– GFR
• UPuC: 

– NILOC, HFR
– NIMPHE, PHENIX
– L414, JOYO
– AC3, FFTF
– Transient tests in TREAT….

• Plate and pin prototype first test
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DEVELOPMENT PHASE : example
•Analytical

– MABB
• MARIOS & DIAMINO in HFR & OSIRIS, 
• Screening experiment on the impact of 

MABB fabricated microstructure on He 
behaviour under irradiation at different temp.

• Exp. Device: self-heating device (TZM), fuel disk

• Temperature controlled with gas composition and constant in the disk  
with axial thermal exchanges to avoid thermal gradients

• Radial and axial gaps to let free swelling of discs.

• Conditions and parameters:
– 4 temp. : 600-800-1000-1200°C
– 2 microstructures
– 2 He production rates

• Irradiation : 2010 (MARIOS)
2011 (DIAMINO).
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OPTIMISATION PHASE

• Objective:

�Performance improvement
�Reliability
�Safety

�Cost

�Limits

• Irradiation

– Representative conditions: in FR or in dedicated loop
system in MTR

– Representative fuel element with industrial fabrication
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Schematic
representation of the 
CEA specimens
for PYCASSO-I.

OPTIMISATION PHASE : example

• Analytical
– HTR

• PYCASSO in HFR

Objectives (CEA): 
– PyC densification kinetics (tangential and radial strain) under

neutron fluence 
– Comparing geometrical changes with ATLAS numerical calculations

Design
– Several conditions: free of stress or representative stress on PyC
– Two stacks of 14 disks are irradiated, at 900 & 1100°C , with

maximum fast neutron fluence 2 x 1025 m-2

– Temperature monitoring with gas composition adjustment + TC on 
device structure

– Avril. 2008 – Avril 2009
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– Homogeneous transmutation
• GACID step1&2

– Objective : demonstration that MOX driver fuel can transmute MA’s 
(Np/Am/Cm) with reduced impact on fuel behaviour. JOYO & MONJU

– Design & fabrication process in progress

OPTIMISATION PHASE : example
• Analytical

– Homogeneous transmutation
• AF-2C, 2D, ATR

– FCCI at high Burn Up

• Integral
– SFR : coprecipitated MOX

• COPIX
– Objective : compare fuel irradiation 

behaviors between Co-precipitated UPuO2  
and French reference fabricated by COCA 
process. PHENIX.

– 2 O/M (1,937 and 1,965) , 
– 2 pins with 2 fabrication routes (direct or 

dilution) � 2 microstructures 
– Sept. 2008 – March 2009 , 4-5 at% -

420W/cm
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QUALIFICATION PHASE

• Objective:

– Demonstration of performance and reliability in normal and 
off-normal conditions at full sub-assembly scale

– Directly useful for industrial applications : fuel cycle  
(specification fulfill) and reactor prototype (safety
licensing).

• Irradiation

– Full sub-assembly scale
– Fabrication in an industrial plant with pilot processes
– Representatives conditions for sub-assembly in a 

prototypic reactor
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QUALIFICATION PHASE : example

• Integral
– Homogeneous transmutation

• GACID step 3
– Bundle-scale MA-bearing Fuel Irradiation Demonstration in 

MONJU
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• PART II : MODELLING AND EXPERIMENTAL VALIDATION
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Fuel Modelling : principles

• In pile behaviour: several phenomena
– Complex
– Simultaneous
– Coupled
…and with irradiation induced changes in  materials

• Schematic view of how models interact

TEMPERATURE
STRESS-STRAIN
DISTRIBUTION

radial power profile

FISSION GAS
BEHAVIOUR

CLADDING
CORROSION

SCC

ELASTICITY
THERMAL EXPANSION
DENSIFICATION
FRAGMENTATION
CREEP
SWELLING

THERMAL
ANALYSIS

MECHANICAL
ANALYSIS

CLAD FAILURE ?
FUEL MELTING?

MICROSTRUCTURAL
CHANGES

AS-FAB. POROSITY
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Fuel Modelling : real life

•Ref. Manning et al., MMSNF conference

•Complete view of how models interact !!!
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• Current model
– PyC is orthotropic and 

anisotropy evolves with 
conditions

– Stresses are relaxed in PyC
by irradiation induced creep.

– Too high stresses could lead 
to PyC and SiC cracks.

• Results : C/E
– No direct measurement, only

particle failure rate (Xe & Kr 
release to birth)

– Calc. surestimates particle
failure

HTR fuel : PyC densification

�Current C/E discrepancies have significant impact on :
Particle failure evaluation (SiC Weibull approach) � first HTR fuel criteria (direct cycle)

Particle failure initiated by 
PyC crack

Calculation with
ATLAS

Results of NPR1 
exp.
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GFR fuel : UPuC models
Vitesse de gonflement de (U,Pu)C
85 % DT   -   Moyenne de 0 à 5 at %
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SFR MOX fuel : microstructure evolution

• Current Models
Different conditions , space and time dependent : temp. 
and temp. gradient, LHR evolution, local composition, 
evolution (O, actinides)

– Gas and solid swelling
– Porosity movement
– Coalescence model (central hole) 
– Crack location

�Current C/E discrepancies have significant impact on:
Margin to melt

Max BU depends on central hole closure to avoid

severe FCMI.

NUCL. TECH. VOL. 156 OCT. 2006,T. Ozawa)

• Results: E/C
– Exp. parameters : central hole, 

columnar grain diameter, clad strain, 
porosity field, 

– Calc. predict central hole and columnar
grain at +25%
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SFR MOX fuel : Fission gas release

• Current model
depending on almost all the others models (JOG, FCCI, 
swelling, clad creep, restructuration, diffusion…)

3 types of model:

– Simple correlation with temp., BU
– Grain size (Booth-like model)
– Full model including known mechanisms

(defect, intra-extra grain diffusion, 
cavities type, bubbles ….)

• Results : C/E
– Exp. parameters : FGR measurement or 

in-situ pressure and FP analysis + fuel 
retained gas distribution

– Calc. predict FGR at +15%

NUCLEAR TECH. VOL. 156 OCT. 2006, T. Ozawa

standard and experimental assemblies,
irradiated in Phénix.

���� Current C/E discrepancies have significant impact on :
Strong impact on temperature
As inner pressure is a clad limiting point, conservative approach
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SFR MOX fuel : Pellet to clad join (JOG)

• Current model
– Cs production � Chemical state prediction (Cs2MoO4) � radial 

(pellet) and axial (gap) transport
• Results : C/E

– Exp. parameter : JOG thickness, retained Cs

– Cal. underestimate JOG thickness at TOP and even at PPN
�high uncertainties on transport mechanism, axial extrusion, 

temperature
NUCLEAR TECHN. VOL. 156 OCT. 
2006,T. Ozawa

�Current C/E discrepancies have significant impact on :  

temperature and clad strain (max. burn up)

Comparison cal/meas for axial evolution of fuel 
clad gap with GERMINAL Code
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SFR MOX fuel : FCCI

measured maximum FCCI depths in FFTF with 
predicted value (IAEA, TECDOC-1083)

Extensive cladding internal corrosion
(~ 40% initial thickness), in an experimental
Phénix fuel element, 15–15 Tiε steel, 
16.9at%,  155 dpa.

���� Current C/E discrepancies have significant impact on :

Clad failure risk evaluation

• Current Models
good understanding of mechanism but full model (neutronic-
thermodynamic-transport-thermodynamic) is still missing

– Simple correlation with BU, temperature

• Results: E/C
– Exp. parameters : axial internal corrosion depth
– Calc. surestimates FCCI in all cases
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SFR MOX fuel : Thermal behaviour
• Challenge : 

reduce uncertainties to increase temperature (B.U./ LHR) with a reliable 
approach

• Objective : accurate prediction of temperatures (+/- 50-100°C)  everywhere in 
fuel pin & in any situation.

• Open questions :
– Heat transfer in the gap before full gap closure wi th JOG?
– Heat transfer at high burnup (JOG conductivity)?
– JOG axial transfert, impact on temperature at top o f FC?
– Thermal conductivity λλλλ of fuel at high burn-up (large degradation? 

effect of species redistribution?)

�In reactor measurement of centre-line temperature
Approach currently chosen to validate our thermal calculation
Need to be associated with others measurements to fix the others
parameters (FGR, diameter change,…)
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SFR MOX fuel : Mechanical behaviour

• Challenge : 
- reduce uncertainties to increase burnup/LHR 
- improve knowledge to propose enhancement  (microst ructure 
or dopant) like PWR

• Objectives
– Predict all dimensional changes: clad strain (5-10% of 

max. strain), gap closure 
– Predict the risk of clad failure during power increase

I induced SCC 
after power 

transient

fuel

cladding

� Mechanical properties of fresh and irradiated fuel and cladding
� In reactor : clad strain measurement and ramp tests in MTR

• Open questions
– Fuel : swelling, creep, cracking coupling ?
– Clad: Creep, swelling at high burn-up/temperature (ODS)?
– FCCI : high accuracy for all clad and all fuel compositions and 

conditions (model based on FP diffusion, oxide compounds 
thermodynamic). How clad properties affected by FCCI?

– FCMI: max burn up for normal conditions and  threshold of 
over-power or over-temperature during transient ?

– what happen with MC/ODS, dispersed fuel/SS, MC/SiCSiCf
(balance fuel creep-swelling and clad creep-swelling)?
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Modelling challenges

• GFR fuel
– MC creep, swelling, FGR comprehensive models
– SiC-SiCf yield and fracture strength, swelling vs temperature, fluence
– MC-SiCSiCf coupling: clad stress and max strain at high doses

• HTR
– Models validation with experimental results (characterisation based)

• SFR MOX driver fuel
– Pellet behaviour at high BU and effect on clad stress
– Burn up linked phenomena: FCCI (clad wastage), JOG
– During transient: thermomechanical behaviour at high burn up
– Species diffusion coupled with thermodynamic

• MOX Homogeneous fuel
– Impact of MA on FCCI, FCMI at high burn up (thermodynamic) and 

margin to melt to be checked

• MABB
– Development of models based on UO2 behaviour, completed with Helium

production and release. Need to take microstructure 
(homogeneous/heterogeneous) into account.
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• PART III : ILLUSTRATIONS OF IRRADIATION-FUEL DESIGN -
MODELLING WITH GENIV FUEL EXAMPLES
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Fuel design 
(behaviour + fabrication)
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Fuel design 
(behaviour + fabrication)

HTR fuel
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Fuel design 
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Fuel design 
(behaviour + fabrication)

SFR- MOX driver fuel

Modelling
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Fuel design 
(behaviour + fabrication)
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Fuel design 
(behaviour + fabrication)

Transmutation, MABB
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conclusion

Classical link between fuel design-irradiation-code

Since 2000….
� Because there is less and less MTRs and SFRs where it’s possible to 

make experiments

� Because of cost :
impossible to have several hundreds points for 1 configuration

� Because modelling has undertaken major steps (numerical methods, 
computer capacity, fuel behaviour knowledge, …)

Irradiation gives results for code qualification
Fuel design ���� irradiation design ���� Irradiation results ����Models devt. and code validation

Models validation gives specification for irradiations
Fuel design ���� calculation ���� models requirements���� irradiation design ���� Irradiation results
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Nevertheless,
• Less than 20 parameters may be checked with PIE results
• Less than 5 parameters may be measured in pile
• Part of calculation uncertainties are due to data eva luation

(fabrication- properties-irradiation conditions)

Improvement on modelling MUST BE COMPLETED with
�More accuracy on fabrication data and irradiation conditions

�More instrumentation in core, especially in MTR (also in 
prototype?) 

�More characterisations in hot cell.
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THANK YOU FOR YOUR ATTENTION
THANK YOU FOR INVITING ME HERE


